HALF.Strategies#

HALF.Strategies.wrap_distil_util#

Strategies from the Distil library#

Strategies adapted from cure-lab#

CoreGCN#

Graph convolutional network sampling strategies (UncertainGCN, CoreGCN, CVPR’21) Sequential Graph Convolutional Network for Active Learning inspired by the implementation from cure-lab https://github.com/cure-lab and by the main the paper https://github.com/razvancaramalau/Sequential-GCN-for-Active-Learning/blob/master/selection_methods.py

param labeled_dataset:

labelled dataset

type labeled_dataset:

Dataset

param unlabeled_dataset:

unlabelled dataset

type unlabeled_dataset:

Dataset

param net:

network model to use

type net:

Module

param nclasses:

number of classes for the model

type nclasses:

int

param args:

can contain the following parameters: - n_hidden: number of hidden units from the GCN used during the select method - dropout: dropout rate of the GCN. Experiments tend to show not to go above 0.3 - subset: we do not select on all unlabeled data but rather on a subset of this size within it - lambda_loss: lambda, weighting factor between the labelled and unlabelled cross-entropy - epoch_gcn number of epochs for the internal GCN model - lr_gcn GCN learning rate - wdecay: weight decay for the GCN default values are constant at the top of the file

type args:

dict

HALF.Strategies.sequence_gcn.CoreGCN.__delattr__(self, name, /)#

Implement delattr(self, name).

HALF.Strategies.sequence_gcn.CoreGCN.__dir__(self, /)#

Default dir() implementation.

HALF.Strategies.sequence_gcn.CoreGCN.__eq__(self, value, /)#

Return self==value.

HALF.Strategies.sequence_gcn.CoreGCN.__format__(self, format_spec, /)#

Default object formatter.

HALF.Strategies.sequence_gcn.CoreGCN.__ge__(self, value, /)#

Return self>=value.

HALF.Strategies.sequence_gcn.CoreGCN.__getattribute__(self, name, /)#

Return getattr(self, name).

HALF.Strategies.sequence_gcn.CoreGCN.__gt__(self, value, /)#

Return self>value.

HALF.Strategies.sequence_gcn.CoreGCN.__hash__(self, /)#

Return hash(self).

HALF.Strategies.sequence_gcn.CoreGCN.__init_subclass__()#

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

HALF.Strategies.sequence_gcn.CoreGCN.__le__(self, value, /)#

Return self<=value.

HALF.Strategies.sequence_gcn.CoreGCN.__lt__(self, value, /)#

Return self<value.

HALF.Strategies.sequence_gcn.CoreGCN.__ne__(self, value, /)#

Return self!=value.

HALF.Strategies.sequence_gcn.CoreGCN.__new__(*args, **kwargs)#

Create and return a new object. See help(type) for accurate signature.

HALF.Strategies.sequence_gcn.CoreGCN.__reduce__(self, /)#

Helper for pickle.

HALF.Strategies.sequence_gcn.CoreGCN.__reduce_ex__(self, protocol, /)#

Helper for pickle.

HALF.Strategies.sequence_gcn.CoreGCN.__repr__(self, /)#

Return repr(self).

HALF.Strategies.sequence_gcn.CoreGCN.__setattr__(self, name, value, /)#

Implement setattr(self, name, value).

HALF.Strategies.sequence_gcn.CoreGCN.__sizeof__(self, /)#

Size of object in memory, in bytes.

HALF.Strategies.sequence_gcn.CoreGCN.__str__(self, /)#

Return str(self).

HALF.Strategies.sequence_gcn.CoreGCN.__subclasshook__()#

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).

UncertainGCN#

HALF.Strategies.sequence_gcn.UncertainGCN.__delattr__(self, name, /)#

Implement delattr(self, name).

HALF.Strategies.sequence_gcn.UncertainGCN.__dir__(self, /)#

Default dir() implementation.

HALF.Strategies.sequence_gcn.UncertainGCN.__eq__(self, value, /)#

Return self==value.

HALF.Strategies.sequence_gcn.UncertainGCN.__format__(self, format_spec, /)#

Default object formatter.

HALF.Strategies.sequence_gcn.UncertainGCN.__ge__(self, value, /)#

Return self>=value.

HALF.Strategies.sequence_gcn.UncertainGCN.__getattribute__(self, name, /)#

Return getattr(self, name).

HALF.Strategies.sequence_gcn.UncertainGCN.__gt__(self, value, /)#

Return self>value.

HALF.Strategies.sequence_gcn.UncertainGCN.__hash__(self, /)#

Return hash(self).

HALF.Strategies.sequence_gcn.UncertainGCN.__init_subclass__()#

This method is called when a class is subclassed.

The default implementation does nothing. It may be overridden to extend subclasses.

HALF.Strategies.sequence_gcn.UncertainGCN.__le__(self, value, /)#

Return self<=value.

HALF.Strategies.sequence_gcn.UncertainGCN.__lt__(self, value, /)#

Return self<value.

HALF.Strategies.sequence_gcn.UncertainGCN.__ne__(self, value, /)#

Return self!=value.

HALF.Strategies.sequence_gcn.UncertainGCN.__new__(*args, **kwargs)#

Create and return a new object. See help(type) for accurate signature.

HALF.Strategies.sequence_gcn.UncertainGCN.__reduce__(self, /)#

Helper for pickle.

HALF.Strategies.sequence_gcn.UncertainGCN.__reduce_ex__(self, protocol, /)#

Helper for pickle.

HALF.Strategies.sequence_gcn.UncertainGCN.__repr__(self, /)#

Return repr(self).

HALF.Strategies.sequence_gcn.UncertainGCN.__setattr__(self, name, value, /)#

Implement setattr(self, name, value).

HALF.Strategies.sequence_gcn.UncertainGCN.__sizeof__(self, /)#

Size of object in memory, in bytes.

HALF.Strategies.sequence_gcn.UncertainGCN.__str__(self, /)#

Return str(self).

HALF.Strategies.sequence_gcn.UncertainGCN.__subclasshook__()#

Abstract classes can override this to customize issubclass().

This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).