HALF.Interfaces#
HALF.Interfaces.AbstractModel#
- class HALF.Interfaces.AbstractModel.AbstractModel[source]#
Bases:
ABC
,LightningModule
Abstract class for the model used in the framework by the Active Learner
- abstract forward(x, last=False)[source]#
Forward pass through model
- Parameters:
x (T.torch) – input
last (bool, optional) – If True, return an (output, embedding) tuple. Defaults to False.
- abstract get_embedding_dim()[source]#
Get dimensionality (number of features) of the embedding
- Returns
int : The dimensionality
- Return type:
int
- training: bool#
HALF.Interfaces.IDataset#
- class HALF.Interfaces.IDataset.IDataset[source]#
Bases:
ABC
,Dataset
Interface for Dataset methods
- abstract create_datasets()[source]#
This method should create the labeled, unlabeled and test datasets (pytorch.utils.data.Dataset)
- abstract property test_transform#
List of tranforms operations for test set
- abstract property train_transform#
List of tranforms operations for train set
HALF.Interfaces.IDelegate#
HALF.Interfaces.IHook#
- class HALF.Interfaces.IHook.IHook[source]#
Bases:
ABC
Abstract class for Hooks and events
- abstract apply(al, *args, **kwargs)[source]#
- Parameters:
al (ActiveLearner) –